THE 12th INTERNATIONAL CONFERENCE ON FLOW MEASUREMENT

September 14~17, 2004, Guilin, China

IMEKO

IMEKO TC9

Chinese Society for Measurement Press
The 12th International Conference on Flow Measurement
Chinese Society for Measurement, September 2004

The Book has been photographically reproduced from the best available copy. The papers were not referred but were reviewed for their technical contents. Editing was restricted to matters of format, general organization and retyping.

The editors assume no responsibility for the accuracy, completeness or usefulness of the information disclosed in this book. Unauthorized use might infringe on privately owned patents of publication right. Please contact the individual authors for permission to reprint otherwise use information from their papers.

Responsible Editors:
Zhao Xiaona

Published by
Chinese Society for Measurement Press
No.18 Bei San huan Dong lu, Beijing 100013, China

京内资准字 2004—L0030 号
The 12th International Conference on Flow Measurement

September 14~17, 2004, Guilin, China

Organized By:
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (AQSIQ)
Chinese Society for Measurement (CSM)

In Coordination With
IMEKO-International Measurement Confederation
Technical Committee 9
National Institute of Metrology (NIM)

International Program Committee

Chairman:
Dr. M. J. Reader-Harris (UK)

Members:
Dr. George E. Mattingly (USA)
Dr. Dietrich Dopheide (Germany)
Dr. Iman J. Landheer (The Netherlands)
Dr. Jan G. Drenthen (The Netherlands)
Dr. Takamoto (Japan)
Dr. Jong S. Paik (Korea)
Dr. Noel Bignell (Australia)
Prof. Jerker Delsing (Sweden)
Dr. Marcos Tadeu Pererira (Brazil)
Dr. Sun Yuanzuo (China)
Mrs. Wang chi (China)

Organizing Committee

Chairman:
Mr. Wang Qinpeng (China)
Vice Chairmen:
Mr. Pan Biqing (China)
Mr. Liu Pingjun (China)
Mr. Xuan Xiang (China)
Mrs. Zhao Ruojian (China)

Editorial Committee

Chairman:
Dr. Sun Yuanzuo (China)
Vice Chairmen:
Mrs. Zhao Xiaona (China)
Mr. Wang Dongwei (China)

Members:
Mr. Du Xiaoping (China)
Mrs. Liu Jian (China)
Mrs. Jiang Yaping (China)
Mr. Wang Qihua (China)
Mrs. Wu Shuhua (China)
Mrs. Wu Xiaomin (China)
Mr. Xu Gang (China)
FOREWORD

The world has now entered the information era, and information technology has become the key to promote the rapid development of science, technology and economy. Information is often obtained by measurement technology and measuring devices. If the information obtained has very large uncertainty, any subsequent transmission, storage and processing of it would be pointless. Measurement technology is therefore of crucial importance, and great attention should be paid to its development.

It is hardly necessary to express again the importance of fluid-flow-measurement technology. The amount of money involved worldwide is enormous. As more and more companies and people are entering the market for trade of liquids and gases, more and more custody-transfer operations occur. Environmental requirements also need more cost-effective flow-measurement devices. The desire to measure flow with decreased uncertainty and cost will continue to increase.

With this background FLOMEKO has grown to be the most successful series of conferences on flow measurement held in different venues around the world. FLOMEKO 2004, the 12th International Conference on Flow Measurement, is sponsored by IMEKO TC9 and organized by the Chinese Society for Measurement. It will be held in the Guilin Bravo Hotel, China, from September 14th to 17th 2004. During the conference 8 keynote lectures and more than 85 research papers from 17 countries will be presented to an audience of about 130 delegates from 20 countries.

The excellent scientific level of the papers at FLOMEKO 2004 will ensure that these proceedings will be a standard reference source for measurement engineers for many years to come.

We are sure that all of us that participate in FLOMEKO 2004 will long remember this FLOMEKO as a very interesting and enjoyable one.

We would like to thank all the contributors who participate in or support the activities of FLOMEKO 2004.

We would like also to thank Mrs Zhao Ruojjiang, Prof. Sun Yanzuo, Mrs Wu Xiaomin, Mrs Zhao Xiaona, Mr Wang Dongwei, and others for their efforts to ensure the punctual publication of these proceedings for FLOMEKO 2004.

You are warmly welcome to Guilin and we hope you enjoy FLOMEKO 2004.

Dr. Wang Qinping

Chairman of Organizing Committee, FLOMEKO 2004

Dr Michael Reader-Harris

Chairman of IMEKO TC9;
Chairman of International Programme Committee, FLOMEKO 2004
CONTENTS

Key Note Lectures

Latest Developments In Flow Measurement Using Differential-Pressure Meters
Michael Reader-Harris..(1)

The Harmonized European Gas Cubic Meter for Natural Gas as Realized by PTB, NMI-VSL and BNM and Its Benefit for User and Metrology
D. Dopheide, B. Micken, R. Kramer, M.P. van der Beek, G. J. Bloom, J.-P. Vallet..................

Flow Measurements for Future Environment and Energy Technology
Masaki Takamoto...(29)

ISO / CD 17089 Measurement of Fluid Flow in Closed Conduits
Ultrasonic Meters for Gas; Meters for Fiscal- And Allocation Measurement
Jan G. Drenthen..(34)

Testing the Wafer V-Cone Flowmeters in accordance with API 5.7 “Testing Protocol for Differential Pressure Flow Measurement Devices” in the CEESI Colorado Test Facility
R. J. W. Peters, Richard Steven, Steve Caldwell, Bill Johansen...

The Prospect of Self-diagnosing Flow Meters
Jicke Delsing...(59)

The Status and Prospect of Gas Flow Value Dissemination System in China
Wang Chi, Wang Dongwei..(65)

The Integrated Technical Solutions of Natural Gas Fiscal Measurement in WEPP
Zheng Qi, Guo Liang..(71)

Gas Flow Calibration Facilities

Germany’s New Optical Primary National Standard for Natural Gas of High Pressure at Pigsar™
Harald Müller, Volker Strunck, Rainer Kramer, Bodo Micken, Dietrich Dopheide,
Hans-Jürgen Hotze...(80)

Reproducibility of the Bernoulli Laboratory in Westerbork
Aernout F. Van den Heuvel, Robert Kruijthof, Henk J. Riezebos..

UME Gas Flow Rate Measurement Systems and the New Wind Tunnel with LDA
Vahit Çiftçi, Hakan Kaykısızlı...(100)

Characterization of a New Calibration Wind-Tunnel within Low Air Velocity Range
Isabelle CARE...(105)

A New Air Velocity Standard by Using LDV and a Wind Tunnel at CMS
Cheng-Tsair Yang, Jeng-Yuan Chen, Jiunn-Haur Shaw..

Uncertainties And Inter-Laboratory Comparisons Of Dry Piston Gas Flow Provers
Harvey Padden..(117)

The Middle Range Gas Flow Standard of SPRING Singapore
Wu Jian...(135)
Harmonised Values and Reference Functions in Key Comparisons
Wolfram Bremser, Bodo Mickan ..(141)

Research of Improving Accuracy of the 3-ton Electric Balance for Gas Flow Measurement
Duan Jinqin, Liu Chunyan, Chen Huiyu, Zhao Baorui ..(148)

Research of the mobile ultrasonic gas flowmeter as work standard
Min Wei, Xia Shouhua ..(154)

The Present Traceability hierarchy of Natural Gas Measurement in China and It's Prospect
Yuan Pingfan, Renjia, Hemin ...(159)

Technical Reformation of Gas Flow Primary Standard with pVTt Method
Wang Dongwei ...(163)

Comparison of pVTt Methods Gas Flow Prover
Meng Tao, Wang Chi ..(169)

Intercomparison tests of gas flow by Bell Prover
Wang Chi, Li Fang, Meng Tao, Xu Yinghua, Yang Youtao, Jiang Ning, Wu Weilong,
Sang Xiaoming, Chen Mei, Zhou Bingzhi, Zhang Jiming, Shen Wencan, Xu Ling ...(174)

Establishment of Piston Devices
Wang Chi, Li Xu, Duan Hui Ming, Wang Dong Wei, Shi Zhen Dong, Meng Tao ...(184)

Liquid Flow Calibration Facilities

PTB’s “Hydrodynamic Test Field”-Investigations to Verify the Measurement
Uncertainty Budget
Rainer Engel ..(190)

UME Test Facilities for Oil Flow Measurement up to 300 m3/h
Vahit Çiftçi, Başak Akselli ..(200)

Uncertainty Analysis of Primary Standard for Hydrocarbon Flow at NMIJ
Takashi Shimada, Ryouji Doihara, Yoshiya Terao and Masaki Takamoto ..(208)

UME Test Facilities for Water Flow Measurement up to 3 000 m3/h
Vahit Çiftçi, Başak Akselli ..(214)

Development of a Diverting System Employing a Rotating Double Wing Method
Ryouji Doihara, Takashi Shimada, Yoshiya Terao and Masaki Takamoto(223)

Introducing UME Diverters' and Weighing Systems for Water and Hydrocarbon Flow Measurement
Vahit Çiftçi, Başak Akselli, Erdem Ergen, Ferhat Tigrel(229)

Compact Water Meter Calibration Bench
Marcos Tadeu Pereira, Valmir Ruiz, Renato Fernandes, Karina Chacur Schraml ..(234)

The Largest Water Flowrate Calibrating Device in China
Sun Guolin, Shen Huijin, Qiao Xingen, Guo Weilin(238)

Validation of a Microflow Calibration System based on a Weighing Method with Pneumatic Control
Chin Hsia, and Cheng-Tsair Yang, Jiunn-Haur Shaw(245)

The Low Liquid Flow Calibration Facility
Yin Jianzhao, Wang Jianzhong, Yao Jing, Zhu Xiaoguang(252)
Ultrasonic Flow Meters

Analysis of the Behaviour of an Ultrasonic Flowmeter Installed in an Oil Offloading System
Olga Satomi Yoshida, Kazuto Kawakita, Marcos Valverde ... (258)

ALTOSONIC III: Dedicated Three Beam Liquid Ultrasonic Flowmeter for
Custody Transfer and Pipeline Leak Detection
Herman Hofstede, Jankees Hogendoorn, Helen Danen, Ralf Tetzner .. (265)

Application of Multi-path Ultrasonic Oil Flowmeter Using a New Weighting Factor Method
Shang-Yoon Hwang, Ho-June Lee, Heuy-Dong Kim .. (271)

Detection of Dynamic Installations Effects by an Ultrasonic Flow Meter in
Non-stationary Flow
Jonathan Berrebi, Jan van Deventer, Jerker Delsing ... (277)

Multi-path Ultrasonic Meter Diagnostics for Field Verification
Dan Hackett, Kevin Chin ... (280)

Measuring Set including a Virtual Standards® Technology-Based Superimposed
Ultrasonic Flow Meter

Critical Flow Venturi Nozzles

Determination of Discharge Coefficients of Sonic Nozzles Obtaining Low Uncertainty
without Knowledge of Throat Diameter
Bodo Mickan, Rainer Kramer, Petra Kiesewetter, Dietrich Dopheide .. (297)

Computational / Experimental Study of a Variable Critical Nozzle Flow
Jae-Hyung Kim, Heuy-Dong Kim, Kyung-Am Park .. (311)

Numerical Investigation of Transitional Effects in Critical Venturi Nozzles
E. von Lavante, B. Mickan, R. Kramer .. (318)

Theory Conversion Method and Uncertainty Analysis for Critical Flow Coefficient of
Venturi Nozzle
Lei Lin, Li Ning, Wang Hou-Jun .. (326)

The Research and Application of Critical-Flow-Subsonic Venturi Nozzle
(The Extended Application of the ISO 9300 Critical Flow Venturi Nozzle)
Wen Hanhang .. (331)

Vortex Flow Meters and Fluid Oscillators

Influence of Inclination of Bluff Body in Flowmeters
Yaoying Lin, Volker Hans ... (336)

Influence of the Variation of the Angle of Incidence in Vortex-shedding Metering
Oliver Ricken, Volker Hans ... (339)

Effects of Shape Change due to Wear on the Accuracy of Vortex-shedding Flow Meters
Ernst von Lavante, Udo Banaszak .. (343)

On Measurement Uncertainty of a Vortex Flowmeter
Jiun-Jih J. Miau, Chen-Fan. Yeh, Chih-Chung Hu, Jung-Hua Chou ... (349)
Micro fluidic Oscillator for Gas Flow Control and Measurement
Eliphas Wagner Simões, Rogerio Furlan, Roberto Eduardo Bruzetti Leminski, Mário Ricardo Gongora-Rubio, Marcos Tadeu Pereira, Nilton Itiro Morimoto
(355)

An Approximate Mathematical Model of Ultrasonic Wave Modulated by Von Karman Vortex Street in a Liquid Fluid
Mustafa Music, Melita Ahic-Djokie, Osman Music, Zijad Djemic
(362)

A Study of Differential Pressure Measurement in Vortex Flowmeter
Huang Yongmei, Zhang Hongjian, Sun Zhiqiang, Han Xuefei
(367)

Electromagnetic Flow Meters

Verification for Electromagnetic Flowmeters: Its current state and its potential
Roger C Baker, Pamela I Moore, Alun Thomas
(372)

Advances in On-Site Verification of Water Flow Meters.
The Intelligent Application of Electromagnetic Insertion Probes
Alun L Thomas, Robert Sheldon, Michael K Fray, Peter Kobryn
(378)

Electromagnetic Insertion Probe Calibration. Advances Towards A Standard
Alun L Thomas, Peter Kobryn, Bryan Franklin
(386)

Optimising the Performance of Battery Electromagnetic Flow Meters.
A Case Study in Meter Specification and Performance
Alun L Thomas, George Archibald, Bryan Franklin
(399)

Simulation Modeling of Electromagnetic Flowmeters at Flows of Intricate Shapes
I. D. Velt, Ju. V. Mikhailova, Sun Yan Zuo
(416)

Electromagnetic Inductive Flow Pattern Reconstruction by Means of Spectrum Expanding
Zhang Xiao-Zhang, Wang Guo-Qiang
(421)

The Application for the Electromagnetic Flowmeter with High-Frequency Magnetic Excitation in the Pulp Measurement
Li Zhengzhong
(428)

Coriolis Mass Flow Meters

Coriolis-mass Flowmeters: State of the Art Review and Innovations
Wolfgang Drahm, Wilhelm Staudt
(431)

API MPMS Chapter 5 Section 6 for Proving Coriolis Meters an Overview
Steve Baldwin
(436)

An Advanced Numerical Model for Single Straight Tube Coriolis Flowmeters
Tao Wang, Roger C. Baker, Yousif Hussain
(449)

A Novel Digital Coriolis Mass Flowmeter
Zheng Dezhi, Fan Shangchun
(455)

Domestic Water, Gas and Heat Meters

Velocity Profile Effect on Woltman Water Meters Performance
Palau C V, Arregui F J, Palau G, Espert V
(461)

Development of the Family Meters Reading
Yang Youtao
(469)
LPG Dispenser Calibration
Yang Youtao ...(472)

Study of Calculation Methods of Heat Transmission of Heat Meters
Li Fang ...(475)

Deliberation of Heat meters Measurement and Testing Technology In District Heating
Zhu Jiguang ...(478)

Experiment and Research upon Dribbling Type Water Meter
Zhang Taifeng, Wang Junren ...(486)

Calibration Methods and Uncertainty Analysis

Rethinking Dry Calibration
Roger C Baker, Pamela L Moore, Tao Wang ...(491)

What If the Calculated Uncertainty of a Calibrated Instrument is Lower than the Standard Instrument Uncertainty?
Valter Yoshihiko Aibe ...(496)

Fuel Oil Dynamic Flow Standard Device and Its Application
Liu Yanjun, Han Yizhong, Zhang Baozhu ...(500)

Mobile Flow Working Standard of Ultrasonic Meter for Natural Gas
Zhang Fuyuan, He Yan, Qiu Fengchun, Lai Zhongze ...(504)

Calibration of Flow Meter by Standard Meter Method and Evaluation of Uncertainty
Li Jinhai ...(509)

Differential Pressure Flow Meters

A New Portable Instrument for Orifice Geometric Parameters Measurement
Yuan Pingfan, He Min, Ren Jia, Liu Chunyan ...(514)

On the Standardization of Elbow Flow Meters
Li Zhi, Wang Chi ...(516)

Study on the Fitting Equations of Discharge Coefficient for Entrance Flowmeters

Iterative Computations of Unknowns for pressure Differential Devices by Means of Secant Method
Wang Bonian, Ye Zengming, Liu Zhihua, Xie Rongbo ...(527)

Research on Insert Double Ventrui Tube Measuring Equipment
Liu Jianhua, Chen Guanghui ...(532)

A Simple Method to Calculate the Standard Calibration Value of Differential Pressure Flow Transmitter
Liu ...(538)

Energy Metering

Acoustic Effects in Metering Stations; Impacts on Performance of Flow Metering Equipment
H. J. (Henk) Riezebobs ...(542)
Improving Heat energy Measurement in District Heating Substations Using an Adaptive Algorithm
Yassin Jomni, Jan van Deventer, Jerker Delsing

The On-line Energy Measurement of Natural Gas New Technologies
Floris Huijsmans, Johan Bats

Turbine Flow Meters

Numerical Simulation of Reynolds Number Effects in a Turbine Flow Meter
E. von Lavante, U. Banaszak, T. Kettner, V. Lötz-Dauer

The Experimental Study and Uncertainty Analysis on the Double Turbine Mass Flowmeter with the Corrective Property for Velocity Distribution
Zhang Xiaozhong, Wu Pingdong, Liang Minghua, Sun Yuehao

Study on The Mathematical Model of Turbine Flowmeters
Sun Lijun, Zhang Tao

PD Meters, Variable Area Flow Meters and Thermal Mass Flow Meters

An Experimental Study on the Characteristics of Oval Gear Flowmeters
Ki Won Lim

Experimental Research on Flow Coefficient of Flow Equation of Metal Rotameter
Su Feng, Zhang Tao

Computational Investigation on the Float-Type Flowmeter in Three-Dimensional Turbulence Flow Field
Xu Ying, Zhang Tao, Wang Huaxiang, Liu Zhengxian, Chen Deyu

Wes Gas and Multiphase Flow Measurement

Haluk Toral, Bob Peters

Transit Time Ultrasonic Modelling in Gas/Liquid Intermittent Flow using Slug Existence Conditions and Void Fraction Analysis
S Al-lababidi, M L Sanderson

Characterization of Oil/Water Two Phase Flow Based on Complexity Theory
Zhao Shu, Jin Ningde, Liu Xingbin

Concentration Measurement of Oil-Water Two-Phase Flow in Electrical Capacitance Tomography System
Chen Deyun, Li Xiaolong, Quan Zhiying, Zhu Xiaofei, Sun Liquan

Experience in Field Tuning and Operation of a Multiphase Meter Based on Neural Net Characterization of Flow Conditions
Shiqian Cai, Haluk Toral

Application of Electrical Impedance Tomography in Pulp Flow Measurement
Shaomin Zhou, Jouko Halttunen

A New Multi-phase Flow Calibration Facility and Its Uncertainty Analysis
Liang Guowei, Zheng Jianguang, Li Wenjun, Zhou Ningning, Li Changwu
Establishment of Experimental Calibrating Facilities for Oil-air-water Three-phase Flow
Zhang Jianjun, Sun Difei, Shi Huining, Yang Yongxiang, Li Xu, Wang Chi.................................(657)

Miscellaneous

A DSP Based Signal Processing System of Vortex Flowmeters
Ke-Jun Xu, Xiao-Fen Wang, Yong-Shan Li...(662)

Testing System of Servo Valve Flow Characteristics
Zhao Yulong, Zhang Yanbin, Jiang Youcai, Chen Donggen..(668)

Header How to Effect Orifice meter in Natural Gas Flow Measurement
Lai Zhongze, Li Xiaobo...(672)

Gas Flow Quantity Measuring Technique to Rock Permeability Using Throttling
Capillary P-Q Regression
Yang Ming-jie, Qi Jing-sun, Jiang Bin, Luo Xing-ren...(678)

A Novel Flow Sensor in Hydraulic System
Zhang Hongpeng, Sun deping, Sun yuqing...(683)

Research for the Flow Profile In the Natural Gas Pipelines by Means of PIV
Guo Xuming, Duan Jiqin, Ni Rui, Dong Shouping...(687)

Testing Standard Sample Calibrating Device Developing of Entire Diameter Rock
Gas Permeability and Its Calibrating Technique to Value Tracing to Source
Pan Hao, Xu Xiqing, Cheng Xianmei, Ma Fengcheng...(693)

The Accuracy of Open Channel Flow Measurements in Industry
Risto Kuoppamäki...(698)
Velocity Profile Effect on Woltman Water Meters Performance

Palau C. V.¹, Arregui F. J.¹, Palau G.², Espert V.¹

1 Institute for Water Technology. Politecnical University of Valencia. Camino de Vera s/n. Apartado 22012. 46071 Valencia. Spain. e-mail: virpaes@ita.upv.es; farrregui@ita.upv.es; vespert@ita.upv.es

2 Dept. Rural and Agrifood Engineering. Politecnical University of Valencia. Camino de Vera s/n. Apartado 22012. 46071 Valencia. Spain. e-mail: guipasal@agf.upv.es

Abstract: This paper describes a detailed study, covering analytic as experimental aspects, about the effect on a commercial Woltman meter of different hydraulic fittings and configurations such as butterfly and gate valves. Firstly, a three-dimensional numerical simulation using computational fluid dynamics techniques (CFD) is used to calculate the alteration of the velocity profile by upstream fittings. Afterwards, the theoretical analysis undertakes the study of blade forces and torques generated by the fluid flow (Baker, 2000). Finally, laboratory test validate the analytical procedure proposed.

Keywords: Woltman water meter; flow distortion; accuracy meter; Computational Fluid Dynamics

1. Introduction

Woltman water meters are frequently installed in water distribution networks. These instruments are used as flowmeters for measuring the injected water to district metering areas and as water meters for industrial and commercial users. Its operating principle is, basically, the same as the turbine flowmeters which have been widely studied in the technical literature. However, these instruments are specially designed to work with water and to integrate the flow rate and provide the total water consumed over a period of time.

Often, the straight length of the pipe situated upstream the water meter is not sufficient to guarantee a fully developed velocity profile. Even though, an improper installation of the Woltman water meter can lead to significant measurement errors. Technical literature about the magnitude of these error is difficult to find. Maybe one reason is because it is not easy to extrapolate conclusions obtained from one meter to other designs. The internal geometry of the meter vary the influence that a distorted velocity profile causes on its performance. The angular velocity of the turbine is a function of the driving torque generated by the fluid. This driving torque depends on the velocity distribution along the section and, also, on the blades and turbine geometries. A distorted flow will modify the driving torque at a given flow rate, changing the original relationship between the actual flow rate and the angular velocity of the propeller. The influence on the accuracy curve of the meter will be different for each model and flow distortion.

This paper describes a theoretical methodology that estimates qualitatively the effect of flow distortions on the accuracy curve of the instrument. The analytical results have been validated by experimental testing of the water meter.

2. Theoretical approach

The primary element of a Woltman water meter is a turbine whose rotational speed is directly proportional to the volumetric flow rate[1]. The angular velocity of the turbine, which is connected directly to the register gears, depends on the incidence angle and the impact velocity of the water passing through the meter. A fully developed velocity profile will result in a distribution of driving forces with axial symmetry around the turbine. This way the resulting force in a portion of the turbine is independent of the circular sector considered.

In a steady state, this driving torque is in equilibrium with the drag torque caused by the bearing, the hub disk friction, the tip clearance and the hub fluid drag[7]. This drag torque may be estimated for a constant rotational speed of the turbine from the driving torque calculated for a fully developed flow profile.
It is clear that this approximation is only completely valid when the flow distortions are not severe but it may be also qualitative good estimated when the flow profile is disturbed. In this case, the larger the disturbance the more incorrect is the proposed approximation for the drag torque.

Therefore, the first step in the methodology is to perform a three-dimensional numerical simulation using computational fluid dynamics techniques (CFD), to calculate the velocity profile resulting from the installation of upstream fittings. Afterwards, through airfoil theory, it is possible to calculate theoretically the forces and torques in the turbine produced by diverse flow conditions.

2.1. Flow simulation

The method uses Computational Fluid Dynamics (CFD) as a tool to calculate water velocity profiles at different sections of the pipe. In particular, the principal purpose of modelling the flow through CFD software is to determine water velocity profiles after a gate or a butterfly valve with several closures and two different lengths of straight pipe between the valve and the meter. The CFD software used for modelling the flow was FLUENT.

Recently, the use of CFD as a tool for hydraulic analysis to predict the flow behaviour inside a pipe is becoming more frequent. Combining the modelled flow in different pipe configurations with the instrument operating principle, it is possible to evaluate the influence of flow distortions on the accuracy curve. Up to day, several studies have been published in which the performance of several flowmeters is estimated from velocity profiles calculated with CFD software. Examples are the reports published by the National Engineering Laboratory for insertion probes and clamp-on ultrasonic meters.

During the study, a classic model, RANS (Reynolds Average Navier-Stokes), was used to simulate the turbulent flow. The turbulence model chosen (governed by Navier-Stokes equations) was the two equations k-ε model with the standard parameters. This approach defines the turbulent viscosity (μt) with only two equations. Table 1 shows the configurations that were simulated and the parameters used during the numerical analysis. Basically, the influence of two types of valves with different closures was tested.

<table>
<thead>
<tr>
<th>Table 1. Flow simulation test and boundary conditions established.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference test</td>
</tr>
<tr>
<td>Opening</td>
</tr>
<tr>
<td>Distance between elements</td>
</tr>
<tr>
<td>Boundary conditions</td>
</tr>
<tr>
<td>Inlet velocity (m/s)</td>
</tr>
<tr>
<td>Outlet pressure (bar)</td>
</tr>
<tr>
<td>Wall roughness k (mm)</td>
</tr>
</tbody>
</table>

Some of the results of the numerical analysis, which facilitate the understanding of the flow behaviour and the influence of the fittings on the velocity profiles that reach the meter, are depicted in figures 1 to 4. The CFD simulations do no include the moving internal parts of the meter and only consider the water meter hub and straighteners. This simplification reduces enormously the computational time required to solve the problem and should not significantly affect the results as long as the incidence angle of the water jets and the blades are small.

For the Woltman meter studied, when the flow profile is not distorted, the incidence angle is lower than 7° (Figure 9). Therefore, in this case, the turbine influence on the upstream flow profile should be also small and the assumption may be considered correct. However, if the flow profile is highly distorted, the incidence angle may change considerably and the effect of the turbine on the upstream velocity distribution may not be negligible.
Figure 1. Longitudinal section of the pipe and meter. Velocity vectors across a partially opened gate valve upstream a Woltman meter (0D).

Figure 2. Water flow distortion in the meter, upstream the turbine, caused by a gate valve with different openings.

Figure 3. Water flow distortion caused by a fully opened butterfly valve installed 3D upstream the meter.

Figure 4. Velocity contours through a partially opened butterfly valve installed 3D upstream the meter.

The previous figures show the velocity profiles upstream the turbine of the Woltman after passing through a gate valve (Figures 1 and 2) and a butterfly valve (Figures 3 and 4). As it is seen, for a gate valve installed upstream the meter only when it is 75% closed the flow distortion is significant. When the butterfly valve is fully opened and it is installed at a distance of three diameters from the meter, the velocity distribution it is not considerably affected. A similar result is obtained when the butterfly valve is 30° closed.

2.2. Theoretical force analysis

By means of airfoil theory [2] it is possible to calculate the forces that water exerts on differential areas of the turbine blades. Integrating these forces through the blade surface and extending the integration to the whole turbine area (equation 1) the total driving torque can be predicted.

\[T_{\text{ax}} = \frac{1}{2} \int \rho L_c W^2 \left(C_{\text{zsen}(l)} - C_{\text{cz}(l)} \right) r \cdot dr \]

(1)

Where Lt is the length of the blade that, for the Woltman meter studied, is a function of the distance to the axis, \(\rho \) the fluid density (Kg/m³), W the incidence velocity of water on the blade (Figure 6), U the tangential blade velocity, V the axial water velocity, Cx and Cz are, respectively, the drag and lift coefficients and \(l \) the angle that forms the incidence velocity with the vertical (Figure 6). The theoretical formula given for the lift and drag coefficient by several authors for a cascade of flat blades is
\[C_z = 2\pi \sin(i/2) \] and \(C_d = 0 \) \([6]\). Being \(i \) the incidence angle between water and the blade.

Figure 5. Horizontal Woltman turbine meter.
Lateral view (a) Frontal view (b)

Figure 6. Forces acting to Woltman meter blades

As previously said the numerical procedure estimates a theoretical driving torque (equation 1), for a given flow rate, with a stationary and fully developed velocity profile. In a steady state, this torque is equal to the drag torque associated to the corresponding angular velocity of the turbine. Then, it is possible to build a drag characteristic curve of the meter as a function of the rotational speed of the turbine (Figure 7). The drag forces are intrinsic to each instrument and depend on the geometry and design of the turbine (Figure 5).

Once the drag torque is known, the next step consists of estimating the effect of a distorted flow on the accuracy of the meter. The procedure only needs to compare the driving torque generated by a distorted flow with the drag torque associated to the nominal angular speed corresponding to that flow rate. If these parameters are not equal, the driving torque is recalculated with a different angular velocity of the turbine and then compared again with the drag torque associated to the new rotational speed. This procedure is repeated until it is found an angular velocity such that both torques are equal (Figure 8).

Then the error change at that flow rate for the distorted flow is easily calculated (equation 2). At this point, it is convenient to remark that the proposed method supposes that a fully developed flow profile will be measured by the meter with no error, independently of the flow rate as long as it is turbulent. If the rotational velocity at which the equilibrium is reached is larger than the nominal one the error will be positive, otherwise the error will be negative.

\[
\epsilon_0 = \frac{\omega_{\text{distorted flow}} - \omega_{\text{fully developed flow}}}{\omega_{\text{fully developed flow}}}
\]

(2)

Figure 7. Woltman meter drag torque in a fully developed flow.

Figure 8. Iterative procedure to estimate \(\omega \) for a distorted flow.

About the limitations of the proposed methodology, it is important to mention that the driving torque depends on the velocity profile upstream the turbine.
and the incidence angle. If the flow is highly distorted the incidence angle may vary from the design one (Figure 9). Since the rotating turbine is not included in the model, for these cases, the incidence angle may not be negligible and the blade may have a considerable influence on the upstream flow. Therefore, for greatly distorted flows, the actual driving torque may differ considerably from the calculated one. Finally, the estimated drag torque (Figure 7) in highly distorted flows is probably significantly different than actual one.

2.3. Results
As seen, from the numerical simulations of the flow and the theoretical analysis presented it is possible to estimate the influence of different flow distortions in the accuracy of a Woltman meter. Following, the results obtained for a real Woltman meter are described.

The incidence angle of water at different sections was calculated using these velocity profiles, obtained from the numerical simulations, the blade geometry and the theoretical rotational speed of the turbine. Under a fully developed flow the approaching velocities and incidence angles have an axial symmetry and basically depend on the distance to the pipe axis. Consequently the driving forces are equilibrated and its contribution to the total driving torque is similar in every slice of the turbine. As depicted in Figure 9 the incidence angles are relatively low, smaller than 7 or 8°, and almost independent of the radius.

![Figure 9. Axial velocity and incidence angle for a fully developed flow profile.](image)

However at the inner and outer side of the blades, at

the hub and the tip, the incidence angle becomes negative which means that at these zones the local force opposes the turbine rotation (Figure 10).

The explanation for this effect is simple. The direction of the velocity at which the water impacts the blade (W) is the result of the composition of the approaching water velocity (V) and the tangential velocity of the blade (U). The incidence angle (i) is the angle that forms the relative velocity of the water upstream the turbine and the blade (W) (Figure 6). Since the axial velocity at the hub and the tip is small and decreases when the water comes closer to the wall, the angle I also decreases becoming at some points smaller than α. As a result, the incidence angle is negative especially at the hub. The tip clearance between the blade and the meter wall mitigates or eliminates this effect at the end of the blade.

![Figure 10. Driving forces at the blade.](image)

<table>
<thead>
<tr>
<th>Table 2. Meters predicted accuracy for different configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOLTMAN WATER METER</td>
</tr>
<tr>
<td>Gate valve</td>
</tr>
<tr>
<td>75% closed</td>
</tr>
<tr>
<td>50% closed</td>
</tr>
<tr>
<td>25% closed</td>
</tr>
<tr>
<td>Butterfly valve</td>
</tr>
<tr>
<td>Open</td>
</tr>
<tr>
<td>30° closed</td>
</tr>
</tbody>
</table>

For calculating the error of the Woltman meter when the velocity profile is distorted it is supposed that under ideal flow conditions the meter has a linear response and the error at any flow rate in a turbulent regimen is zero. Table 2 shows the results of the estimated error of this Woltman meter for several configurations.

It was concluded that for a gate valve installed just upstream the meter, the average metering error increased with the closing of the valve.

When the gate valve was closed approximately 25%, the performance of the meter was not affected. When the closing of the valve reached the 75% the metering
error increased to 44.35%. However, it is significant that the theoretical analysis concluded that when the valve was half closed the error was only of 1.85%. That would mean that this type of meter was not significantly affected by the flow distortions caused by a gate valve as long as it is not closed more than 50%. With the same procedure, it was also concluded that when the gate valve was installed three diameters upstream the water meter, the discrepancies only increased by 2%.

After obtaining these results further investigation was carried out for the configuration in which the gate valve is installed right upstream the meter and is 75% closed. In first place, an important distortion in the flow profile was detected. Figure 11a and Figure 11b show the velocity profiles in two rakes, one in the upper part of the pipe and the other in the lower part.

For an average velocity of 8 m/s, which corresponds approximately to a flow rate of 100 m3/h, the flow velocity in the upper section is less than 1 m/s while in the lower it is greater than 14 m/s, with an incidence angle, i, close to 16°. Due to the low velocity, the incidence angle in the upper part of the pipe is negative, which means that the driving forces are opposed to the rotation of the turbine, while in the lower part the driving forces greatly increase with respect a fully developed flow profile.

As an example Figure 11b and 11d, represent the increment in momentum produced by the flow distortion in two rakes. It is clear that in this case the total torque rise in the lower part is greater than the momentum lost in the upper section. For that reason the metering errors become positive.

![Graphs showing velocity profiles and torque variation](image)

Figure 11. Two side velocity profiles and torque variation compared to a fully developed flow.

Finally, the theoretical errors obtained when the flow distortion is caused by a butterfly valve fully open and partially closed (30°) at a distance of three diameters are approximately of -0.5%.

3. Laboratory tests

The theoretical results were validated against a set of laboratory tests. In general, the laboratory results show a consistent performance of the instrument.

Only when the velocity profile is greatly distorted by a gate valve 75% closed, installed just upstream the meter, some positive errors are observed. However the magnitude of this error, approximately of +4%, is much less than the predicted one of +45% (Figure 12). It was also checked in the laboratory that when the closure of the gate valve was greater than 92% the error was approximately +40% (Figure 15).
The accuracy curves of the meter show that as the distortion of the velocity profile decreases, because the perturbing element is further away from the meter or the closure of the valve is smaller, the measuring error is more similar to the one obtained under a fully developed flow (Figure 12). The flow distortion originated by a butterfly valve installed three diameters upstream the meter does not cause significant measuring errors (Figure 14).

The experimental results prove that a distance of three diameters of straight pipe upstream this Woltman meter is enough to assure a good measurement, accurate in ±2%, when the flow distortion is caused by a butterfly or a gate valve. These results are similar to those obtained by the theoretical calculations following the method explained in section 2.

Figure 12. Laboratory tests. Woltman 80 mm. Gate valve installed 0D upstream the meter.

Figure 13. Laboratory tests. Woltman 80 mm. Gate valve installed 3D upstream the meter.

Figure 14. Laboratory tests. Woltman 80 mm. Butterfly valve installed 3D upstream the meter.

Figure 15. Laboratory tests. Woltman 80 mm. Gate valve installed 3D upstream the meter.

4. Conclusions

Even these days many flow measuring devices commonly used in water supply systems are inappropriately installed. Most of the times due to the lack of knowledge of the technical staff that are not familiar or do not follow the manufacturer recommendations about the installation and maintenance of the instruments.

Woltman meters, which can be considered as a type of turbine flowmeters are sensitive to the approaching flow profile quality. However, there is not much knowledge of the effect of flow profile distortions on the accuracy curve of these meters. This paper presents a theoretical methodology for estimating the measuring errors of a Woltman meter in different configurations.

The methodology applied in this case to a gate and a butterfly valve can be extended to estimate the
performance of Woltman meters under the effect of other flow disturbances. The method uses CFD techniques for calculating the velocity profile upstream the turbine of a Woltman meter and after the flow distortion. A theoretical drag torque for different rotational speeds of the turbine is estimated from the driving torque generated by a fully developed flow. The driving torque is calculated using airfoil theory (equation 1). This estimated drag torque, associated to a specific angular velocity of the turbine, is then compared with the driving torque generated by the distorted flow profile to calculate approximately the over or sub registration of the meter.

The theoretical conclusions have been contrasted with several laboratory tests of the meter. In all configurations the results obtained by both procedures, theoretical and experimental, are quite similar except for that in which the flow distortion upstream the turbine section is significant, when the gate valve is 75% closed and it is installed just upstream the water meter. In this case the predicted error at several flow rates was of +45%. However the actual error of the meter proved to be much lower, of only +4%. The assumptions adopted during the procedure explain this discrepancy. In this sense it is important to highlight that the theoretical analysis performed in this paper is only a qualitative analysis and does not intend to predict exactly the real accuracy of the meter.

Reference